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Abstract

We present a simple and efficient numerical method for the simulation of the three-dimensional pyramid quantum

dot heterostructure. The pyramid-shaped quantum dot is placed in a computational box with uniform mesh in

Cartesian coordinates. The corresponding Schr€odinger equation is discretized using the finite volume method and the

interface conditions are incorporated into the discretization scheme without explicitly enforcing them. The resulting

matrix eigenvalue problem is then solved using a Jacobi–Davidson based method. Both linear and non-linear eigenvalue

problems are simulated. The scheme is 2nd order accurate and converges extremely fast. The superior performance is a

combined effect of the uniform spacing of the grids and the nice structure of the resulting matrices. We have successfully

simulated a variety of test problems, including a quintic polynomial eigenvalue problem with more than 32 million

variables.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Finite volume method; Heterostructure; Large scale polynomial eigenvalue problem; Semiconductor pyramid quantum dot;

Schr€odinger equation
1. Introduction

The purpose of this paper is to compute all the relevant energy states (eigenvalues) and the corre-

sponding wave functions (eigenvectors) of a three-dimension (3D) semiconductor pyramidal quantum dot

(QD) for electrons in the conduction band. As shown in Fig. 1, the dot is embedded in a cuboid matrix of

different material. A typical example is an InAs pyramid QD embedded in a cuboid GaAs matrix.
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Fig. 1. Structure schema of a pyramid quantum dot.
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The pyramid-shaped QDs are standard product of modern semiconductor manufacturing procedures.

These nano-scale QDs have been of great interest over the past few years and have stimulated numerous

research activities concerning their physical properties [9,18,22,29] and applications [6,15,16,21,28].

The governing equation for this problem is the Schr€odinger equation

�r � �h2

2mðr; kÞru
� �

þ V ðrÞu ¼ ku; ð1Þ

where �h is the reduced Plank constant, k is the unknown eigenvalue and uðrÞ the corresponding eigen-

function. Here the effective electron mass mðr; kÞ and the confinement potential V ðrÞ are discontinuous

across the heterojunction.

The dependence of mðr; kÞ on k can be derived from the eight-band k � p analysis and the effective mass

theory. This is the simplest possible model taking into account the spin–orbit split-off coupling.

First of all, starting from the Hamiltonian of the electron with a nearly periodic potential VpðrÞ which
varies on a small scale (the lattice constant), we apply the L€owdin perturbation expansion up to second

order to get an 8� 8 Hamiltonian He that acts on the envelope functions for electrons in the lowest

conduction band and the top valence band. The corresponding potential term V ðrÞ is the local average of

VpðrÞ. Both V ðrÞ and the envelope functions vary on a scale much larger than the lattice constant.

Secondly, instead of solving the eigenvalue problem for the Hamiltonian He, the effective mass theory

proposes to project the 8� 8 Hamiltonian onto the conduction band and results in a single Hamiltonian

eigenvalue problem (1) with the effective mass mðkÞ given by the secular equation

detðHe � kÞ ¼ 0: ð2Þ

With properly chosen basis functions, the effective Hamiltonian He can be block-diagonalized and the
solution to the secular equation (2) gives the effective mass as a rational function of the energy:

mðr; kÞ ¼ m1ðkÞ in material 1 ðthe dotÞ;
m2ðkÞ in material 2 ðthe matrixÞ;

�
V ðrÞ ¼ V1 in the dot;

V2 in the matrix;

�
ð3Þ



210 T.-M. Hwang et al. / Journal of Computational Physics 196 (2004) 208–232
where

1

m‘ðkÞ
¼ P 2

‘

�h2
2

kþ g‘ � V‘

�
þ 1

kþ g‘ � V‘ þ d‘

�
; ‘ ¼ 1; 2: ð4Þ

Here P‘, g‘ and d‘ are the momentum matrix element, the conduction and spin–orbit split-off band gaps for

the dot (‘ ¼ 1) and the matrix (‘ ¼ 2), respectively.

In the small wave number limit, mðkÞ can be further approximated by the effective mass at the Brillouin

zone center. Therefore mðr; kÞ and V ðrÞ are both piecewise constant functions of r:

mðr; kÞ ¼ m1 in the dot;
m2 in the matrix;

�
V ðrÞ ¼ V1 in the dot;

V2 in the matrix:

�
ð5Þ

The approximation (5) gives a quadratic dispersion relation between the energy and the wave number. Thus

(5) is sometimes referred to as the parabolic approximation and (4) the non-parabolic approximation.

A detail introduction of the k � p theory and the Kane model mentioned above can be found, for example,

in [3,8].

An improvement over the non-parabolic approximation (4) is to take into account the effect of strain.
The strain tensor is obtained using linear elastic theory via minimization of the free energy for the structure

[33]. The computed strain is then added to the effective Hamiltonian He following the Bir–Pikus theory [4].

The presence of the strain Hamiltonian changes the dispersion relation and the band gaps of the materials.

Since the strain is anisotropic and position dependent, the resulting effective mass is a tensor and the

corresponding Schr€odinger equation becomes

 
� �h2

2

X
a;b¼x;y;z

@a
1

mabðr; kÞ
@b þ V ðrÞ

!
u ¼ ku: ð6Þ

A detailed derivation starting from the six-band Kane model with strain (neglecting the spin–orbit split-

off coupling) can be found in [14]. Following the notations in [12,13], the perpendicular and in-plane

components of the (diagonal) effective mass tensor are given by

1

mxxðr; kÞ
¼ 1

myyðr; kÞ
¼ Eg

m�
0:25

k� VlhðrÞ

�
þ 0:75

k� VhhðrÞ

�
1

mzzðr; kÞ
¼ Eg

m�
1

k� VlhðrÞ

� �
;

ð7Þ

where m� and Eg denote the bulk effective mass and band gap of InAs, and VhhðrÞ and VlhðrÞ the position

dependent heavy hole and light-hole bands of the structure.

The potential term V ðrÞ in (6) include the contributions from externally applied voltage, the conduction-

band offset, the conduction-band strain potential, and the piezoelectric potential. The contribution from the

strain tensor is also included in the band edge energies VcðrÞ, VhhðrÞ and VlhðrÞ [12,14].
A constant effective mass model derived from the six-band model with strain (excluding the conduction

band) can be found in [8].

If in addition, the diffusion of Indium is taken into account, the material constants for InxGa1�xAs can be

taken as, for example, the interpolation of those of InAs and GaAs [8,12] and the effective mass tensor

remains a rational function of the form (7). An explicit form of the Indium mole fraction distribution xðrÞ
was proposed in [12].
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In summary, the effective mass (3) and (7) can be expressed as a rational function in k of the form

1

mðr; kÞ ¼
Xn
i

ciðrÞ
k� WiðrÞ

; ð8Þ

where ciðrÞ, WiðrÞ and the potential term V ðrÞ are position dependent functions which are discontinuous

across the heterojunction. This motivates us to propose an efficient numerical method for solving the

generalized eigenvalue problem (1). Our method applies to the general case (8). For simplicity of presen-

tation, we will only consider (4) and (5) throughout this paper.
Due to the complicated nature of the Schr€odinger equation (1), the analytic solutions can only be

obtained for 1D (quantum wells) and 2D (quantum wires) models with symmetry. Relatively few re-

search reports are focused on real 3D QDs. In such cases, neither analytical techniques nor asymptotic

analysis gives useful information and numerical simulation becomes a very important access to this

problem.

While numerical simulations play an important role [32,36,44], most existing methods are designed for

1D and 2D problems with symmetry where the matrix size of the eigenvalue problem is much smaller.

Besides, very few results can be applied by current computational methods for real 3D QDs [17, Section
11.6].

There are a few recent progress on various models of genuine 3D QD simulations. Pryor [33] studied the

electronic structure of pyramidal shaped QDs. An eight-band strain-dependent k � p Hamiltonian was

discretized by finite differences and then solved by the Lanczos algorithm. El-Moghraby et al. [10] used a

finite difference technique to solve the Schr€odinger equation of a pyramid QD with constant effective mass

model. Instead of solving the eigenvalue problems, the energies (eigenvalues) were scanned over a range and

each of the chosen energies are substituted into the discretized equation to form a linear system and de-

termine if the corresponding matrix is singular. All of these systems are examined to obtain the candidates
of the wave function (eigenvector).

In this paper, we propose to solve the linear and non-linear eigenvalue problems directly using a finite

volume discretization and a Jacobi–Davidson based eigensolver.

Since the 3D problem results in a huge matrix eigenvalue problem, the discretization of the Schr€odinger
equation much affects the performance of the overall scheme. From our experience in the simulation of

cylindrical QDs, first order discretization gives relatively low accuracy, especially for non-linear eigenvalue

problems [26,43]. As a result, local mesh refinement near the heterojunction is necessary in order to achieve

reasonable accuracy. However, local mesh refinement also destroys the structure of the matrices. The di-
agonal entries corresponding to the fine meshes are much larger than others. The variations among the

diagonal entries made efficient preconditioning quite difficult. This is even more challenging for large scale

non-linear problems.

Fortunately, thanks to the geometric structure of the pyramid, the QD can be embedded in a Cartesian

coordinate with uniform mesh. We will show that, with a carefully chosen grids, the Schr€odinger equation
can be discretized using a finite volume method that automatically builds in the interface condition and

maintain global second order accuracy.

The discretized Schr€odinger equation then leads to the matrix polynomial eigenvalue problem

AðkÞF �
Xs
i¼0

kiAi

 !
F ¼ 0; ð9Þ

where k 2 C, F 2 CN, s is the degree of the matrix polynomial, Ai 2 RN�N, and N is the total number of

unknowns. The matrix polynomial eigenvalue problem (9) is a linear (s ¼ 1) eigenvalue problem for the

constant effective mass model (5). It becomes a quintic or higher order polynomial eigenvalue problem
(sP 5) provided the models (4) or (8) is used. The main computational challenge is that only several

smallest positive eigenvalues of a very large-sized polynomial eigenvalue problem are relevant.
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Traditional linear eigenvalue problem solvers, such as rational Krylov subspace methods [24,34,35], a

linear system is solved approximately in each of the iterative steps. This process usually leads to intractable

computational cost and sometimes inaccurate eigenpairs for large eigenvalue problems that typically arises
in 3D problems. In contrast, recently developed Jacobi–Davidson methods [30,37–39] suggest a promising

approach for linear and quadratic eigenvalue problems of very large size. Instead of inverting a large sparse

matrix, the main source of computational cost for this approach is the matrix-vector multiplication. Only a

much smaller (usually tens of unknowns) eigenvalue problem is actually solved. Inspired by the results

reported in [30,37–39], we propose a modified version of the Jacobi–Davidson methods with locking and

restarting deflation technique to solve the desired eigenpairs of (9).

Overall, we find the resulting spatial discretization to be second order accurate and the eigensolver

converges extremely fast. The uniform placement of the grids not only reduces the programming labor, it is
also crucial in accelerating the convergence of the Jacobi–Davidson step. From our simulation using

64� 64� 48 grids, the computed eigenvalues have only 0.2% to 0.2% relative error from its limiting value

(h ! 0). On the other hand, since the matrices are sparse, we are able to increase the matrix size to the

machine memory limit (about 8 gigabytes) that corresponds to more than 32 million unknowns, the re-

sulting eigenvalues and eigenvectors converges within 74–220 iterations, or 4800–8200 s on a decent

workstation.

The rest of the paper is organized as follows. We first derive the finite volume scheme over a 2D tri-

angular and a 3D pyramid domain in Sections 2.1 and 3. The Jacobi–Davidson type method for solving the
corresponding eigenvalue problems is then described in Section 4. Numerical examples are reported and

analyzed in Section 5 to explore the performance of the scheme. Finally we close the paper with a few

concluding remarks in Section 6.
2. The discretization of the Schr€odinger equation

The Schr€odinger equations (1) and (10) with discontinuous effective mass is also known as the elliptic
interface problem. Associated with the discontinuity in m, we have the following interface condition

(usually refereed to as the Ben Daniel–Duke condition [3])

1

mðr; kÞ
ou
on

� �����
oD�

¼ 1

mðr; kÞ
ou
on

� �����
oDþ

; ð10Þ

where D is the domain of the pyramid dot and n is the outward normal.

The interface problem, in general, may be solved by other second order methods such as the immersed

interface method (IIM) [25], body fitting finite element method [5,7] or the immersed finite element method

[11]. However, most of these methods are designed for piecewise constant coefficient problems and become

quite complicated, sometimes inaccessible, for polynomial eigenvalue problems. There is also a class of

finite difference schemes that replace the discontinuous coefficient by a smooth coefficient using an aver-

aging process and then discretize the modified problem with standard centered difference. These scheme are

known to have only first order accuracy and are thus not recommended for this problem.
Due to the special structure of the pyramid, we can embed the QD in a Cartesian coordinate with

uniform mesh. We will show that the corresponding finite volume discretization results in a monotone

operator with OðhÞ local truncation error on the interface and Oðh2Þ elsewhere. Therefore global second

order accuracy is expected. This is indeed verified in our numerical examples. See Section 5.

For simplicity of presentation, we will give detail derivation of the scheme over 2D triangular domain

and generalize the result to 3D pyramid domain.
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2.1. 2D finite volume scheme for a triangular domain

Consider a 2D triangular QD with height H and base width W placed in rectangular domain. In practice,
we are only interested in the confined eigenfunctions of (1) which decay exponentially outside the QD. We

therefore choose a 2W � 3H rectangle and impose the homogeneous Dirichlet boundary conditions u ¼ 0

on the outer boundary of the rectangle for simplicity. We fix the ratio of the mesh sizes Dx=Dy ¼ W =2H as

mesh refines, see Fig. 2. For convenience, the nodes in the exterior and interior of the triangle are labeled by

0 and 1, respectively. Those on the left, right, and bottom of the triangle are labeled by 2, 3, and 4; the top,

left, and right corners are labeled by 5, 6, and 7, respectively.

For simplicity, we use the notation

aþ � �h2

2m2

and a� � �h2

2m1

ð11Þ

to rewrite the Schr€odinger equation (1) and the interface condition (10) as

�r � ðaruÞ þ Vu ¼ ku; ð12Þ
where

a ¼ a� inside;
aþ outside;

�
V ¼ V � ¼ V1 inside;

V þ ¼ V2 outside

�

and

a�
ou
on

����
oD�

¼ aþ
ou
on

����
oDþ

; ð13Þ

respectively.
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Fig. 2. Schema of the uniform discretization scheme of a 2D domain.
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Consider the standard centered difference method for points in the interior and the exterior

�a
uiþ1;j � 2ui;j þ ui�1;j

ðDxÞ2

 
þ ui;jþ1 � 2ui;j þ ui;j�1

ðDyÞ2

!
þ Vui;j ¼ kui;j: ð14Þ

Since all five points are on the same side of the heterojunction, a and V are therefore a constants among

all five points and the local truncation error for (14) is Oðh2Þ from standard analysis.

The standard finite difference scheme (14) can also be rearranged as

�a
uiþ1;j � ui;j

Dx
Dy

�
þ ui�1;j � ui;j

Dx
Dy þ ui;jþ1 � ui;j

Dy
Dxþ ui;j�1 � ui;j

Dy
Dx
�

¼ DxDyðk� V Þui;j; ð15Þ

which is a 2nd order approximation of the integral form of the Schr€odinger equation (1) over the control

volume X of size Dx� Dy

�
Z
oX

a
ou
on

¼
Z Z

X
ðk� V Þu ð16Þ

as shown in (e) of Fig. 3.

This finite volume interpretation for (14) is the basis for the discretization of nodes on the heterojunction

(labeled 2 through 7).

For example, consider the mesh points located at the left hypotenuse and the integral equation (16) over

the control volume X as shown in (d) of Fig. 3. We denote the four portions of oX as oXE, oXN, oXW, and

oXS, respectively.
p

q

r

Ω p

q

r

Ω Ω

Ω Ω

(a) (b) (c)

(d) (e)

Fig. 3. Discretization schema of the (a) top, (b) left, (c) right corners and (d) left hypotenuse. The solid lines represents the hetero-

junctions. The solid points are the mesh points.
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The line integral over, say, oXE can be approximated byZ
oXE

aun ds ¼
Z
oXE

a�ux ds ¼ a�u
0

iþ1
2
;jDy þOðDy3Þ ¼ a�

uiþ1;j � ui;j
Dx

Dy þOðh3Þ;

where h ¼ maxðDx;DyÞ and we can therefore approximate the left hand side of Eq. (16) by

�
Z
oX

a
ou
on

¼ �
Z
oXE

a
ou
on

�
Z
oXN

a
ou
on

�
Z
oXW

a
ou
on

�
Z
oXS

a
ou
on

¼ �a�
uiþ1;j � ui;j

Dx
Dy � aþ

ui;jþ1 � ui;j
Dy

Dx� aþ
ui�1;j � ui;j

Dx
Dy � a�

ui;j�1 � ui;j
Dy

DxþOðh3Þ:

ð17Þ
On the other hand, the right hand side of Eq. (16) can be approximated byZ Z

X
ðk� V Þu ¼ DxDy

�
� 1

2
V �

�
þ 1

2
V þ
�
ui;j þ kui;j þOðhÞ

�
: ð18Þ

It follows that the finite volume discretization on the left hypotenuse is given by

� 1

ðDxÞ2
aþui�1;j

�
� ðaþ þ a�Þui;j þ a�uiþ1;j

�
� 1

ðDyÞ2
a�ui;j�1

�
� ðaþ þ a�Þui;j þ aþui;jþ1

�

þ 1

2
V �

�
þ 1

2
V þ
�
ui;j ¼ kui;j þOðhÞ: ð19Þ

Similarly, we can derive the finite volume discretization on the right hypotenuse

� 1

ðDxÞ2
a�ui�1;j

�
� ðaþ þ a�Þui;j þ aþuiþ1;j

�
� 1

ðDyÞ2
a�ui;j�1

�
� ðaþ þ a�Þui;j þ aþui;jþ1

�
þ 1

2
V �

�
þ 1

2
V þ
�
ui;j ¼ kui;j þOðhÞ ð20Þ

and on the top

� 1

ðDxÞ2
aþui�1;j

�
� 2aþui;j þ aþuiþ1;j

�
� 1

ðDyÞ2
a�ui;j�1

�
� ðaþ þ a�Þui;j þ aþui;jþ1

�

þ 1

4
V �

�
þ 3

4
V þ
�
ui;j ¼ kui;j þOðhÞ; ð21Þ

respectively.

The derivation for the finite volume approximation on the left and the right corners is similar. We divide

oXE into two segments rq and qp (Fig. 3(b)) and then use the local expansions

u�x ðpÞ ¼ u�x ðqÞ þ
Dy
2
u�yxðqÞ þOðh2Þ;

uxðrÞ ¼ uþx ðqÞ �
Dy
2
uþyxðqÞ þOðh2Þ

ð22Þ

to compute the east line integral. Here the superscript denotes the limiting value from inside ()) and outside

(+), respectively.
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From (22), we haveZ
oXE

a
ou
on

d‘y ¼
Z
oXE

aux d‘y ¼
Z p

q
a�ux d‘y þ

Z q

r
aþux d‘y

¼ a�
uxðpÞ þ uxðqÞ

2

� �
Dy
2

þ aþ
uxðqÞ þ uxðrÞ

2

� �
Dy
2

þOðh3Þ ðtrapezoidal ruleÞ

¼ a� uxðqÞ
�

þ u�x ðpÞ � u�x ðqÞ
2

�
Dy
2

þ aþ uþx ðqÞ
�

þ uxðrÞ � uþx ðqÞ
2

�
Dy
2

þOðh3Þ

¼ a�ð þ aþÞDy
2
uxðqÞ þ

Dy
2

� �2
1

2

� �
a�u�yxðqÞ
�

� aþuþyxðqÞ
�
þOðh3Þ

¼ a� þ aþð ÞDy
2

uxðqÞ þOðh3Þ

¼ a� þ aþð Þ
2

uiþ1;j � ui;j
Dx

Dy þOðh3Þ;

where we have used the formula

aþuþyxðqÞ ¼ a�u�yxðqÞ;

which is a direct consequence of the interface condition

aþuþy ðqÞ ¼ a�u�y ðqÞ:

We can now approximate the left hand side of Eq. (16) at the left corner as

�
Z
oX

a
ou
on

¼ �
Z
oXN

a
ou
on

�
Z
oXW

a
ou
on

�
Z
oXS

a
ou
on

�
Z
oXE

a
ou
on

¼ �aþ
ui;jþ1 � ui;j

Dy
Dx� aþ

ui�1;j � ui;j
Dx

Dy � aþ
ui;j�1 � ui;j

Dy
Dx

� a� þ aþð Þ
2

uiþ1;j � ui;j
Dx

Dy þOðh3Þ: ð23Þ

Similarly, the right hand side of the equation is approximated byZ Z
X
ðk� V Þu ¼ DxDy kui;j

�
� 1

8
V �

�
þ 7

8
V þ
�
ui;j þOðhÞ

�
ð24Þ

and we conclude with the finite volume discretization at the left corner as
� 1

ðDxÞ2
aþui�1;j

�
� aþ
�

þ aþ þ a�

2

�
ui;j þ

aþ þ a�

2
uiþ1;j

�
� 1

ðDyÞ2
aþui;j�1

�
� 2aþui;j þ aþui;jþ1

�
þ 1

8
V �

�
þ 7

8
V þ
�
ui;j ¼ kui;j þOðhÞ: ð25Þ
The derivation for the discretization at the right corner and the bottom points are quite similar. The

results are given by (the right corner)
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� 1

ðDxÞ2
a� þ aþ

2
ui�1;j

�
� aþ þ a�

2

�
þ aþ

�
ui;j þ aþuiþ1;j

�
� 1

ðDyÞ2
aþui;j�1

�
� 2aþui;j þ aþui;jþ1

�
þ 1

8
V �

�
þ 7

8
V þ
�
ui;j ¼ kui;j þOðhÞ ð26Þ

and (the bottom)
� 1

ðDxÞ2
a� þ aþ

2
ui�1;j

�
� 2ui;j þ uiþ1;j

�
� 1

ðDyÞ2
aþui;j�1

�
� ðaþ þ a�Þui;j þ a�ui;jþ1

�

þ 1

2
V �

�
þ 1

2
V þ
�
ui;j ¼ kui;j þOðhÞ; ð27Þ
respectively.

Remarks.

1. We can summarize the discretization (14), (19)–(21) and (25)–(27) as

�rh � ð�arhuÞ þ ��V u ¼ ku; ð28Þ

where �a and ��V denote line average of a and area average of V over the control cell, respectively.

2. The finite volume scheme presented here can be derived as a finite difference scheme which incorporates
the jump condition into the discretization without explicitly enforcing them. The finite difference inter-

pretation of the scheme allows us the to extend the current scheme into higher order finite difference

scheme. The detail derivation is given in Appendix A.
3. 3D scheme for the pyramid quantum dot

The finite volume scheme over the 3D domain can be easily extended from the 2D scheme presented in
Section 2, we omit the detail derivation and only summarize them as
�rh � ð��arhuÞ þ ���V u ¼ ku; ð29Þ

where ��a and
���V denote the surface averages of a and the volume average of V over the controlled volume

element, respectively.

We list the detailed formulas for representative points on the interior/exterior, surfaces, edges and

corners as below:
• Points in the exterior of the pyramid:
1

ðDxÞ2
aþui�1;j;k

	
� 2aþuijk þ aþuiþ1;j;k



þ 1

ðDyÞ2
aþui;j�1;k

	
� 2aþuijk þ aþui;jþ1;k



þ 1

ðDzÞ2
aþui;j;k�1

	
� 2aþuijk þ aþui;j;kþ1



¼ V þuijk � kuijk: ð30Þ
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• Points in the interior of the pyramid:

1

ðDxÞ2
a�ui�1;j;k

	
� 2a�uijk þ a�uiþ1;j;k



þ 1

ðDyÞ2
a�ui;j�1;k

	
� 2a�uijk þ a�ui;jþ1;k



þ 1

ðDzÞ2
a�ui;j;k�1

	
� 2a�uijk þ a�ui;j;kþ1



¼ V �uijk � kuijk: ð31Þ

• Points on the western surface of the pyramid:

1

ðDxÞ2
aþui�1;j;k

	
� aþð þ a�Þuijk þ a�uiþ1;j;k



þ 1

ðDyÞ2
aþ þ a�

2
ui;j�1;k � 2uijk þ ui;jþ1;k

� �� �

þ 1

ðDzÞ2
a�ui;j;k�1

	
� aþð þ a�Þuijk þ aþui;j;kþ1



¼ V þ þ V �

2
uijk � kuijk: ð32Þ

• Points on the southern surface of the pyramid:

1

ðDxÞ2
aþ þ a�

2
ui�1;j;k � 2uijk þ uiþ1;j;k

� �� �
þ 1

ðDyÞ2
aþui;j�1;k

	
� aþð þ a�Þuijk þ a�ui;jþ1;k



þ 1

ðDzÞ2
a�ui;j;k�1

	
� aþð þ a�Þuijk þ aþui;j;kþ1



¼ V þ þ V �

2
uijk � kuijk: ð33Þ

• Points on the bottom surface of the pyramid:
1

ðDxÞ2
aþ þ a�

2
ui�1;j;k � 2uijk þ uiþ1;j;k

� �� �
þ 1

ðDyÞ2
aþ þ a�

2
ui;j�1;k � 2uijk þ ui;jþ1;k

� �� �

þ 1

ðDzÞ2
aþui;j;k�1

	
� aþð þ a�Þuijk þ a�ui;j;kþ1



¼ V þ þ V �

2
uijk � kuijk: ð34Þ

• Points on the southwestern edge of the pyramid:
1

ðDxÞ2
aþui�1;j;k � aþ þ aþ þ a�

2

� �
uijk þ

aþ þ a�

2
uiþ1;j;k

� �

þ 1

ðDyÞ2
�
aþui;j�1;k � aþ þ aþ þ a�

2

� �
uijk þ

aþ þ a�

2
ui;jþ1;k

�

þ 1

ðDzÞ2
a�ui;j;k�1

	
� aþð þ a�Þuijk þ aþui;j;kþ1



¼ 2V þ þ V �

3
uijk � kuijk: ð35Þ
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• Points on the western edge at the bottom of the pyramid:

1

ðDxÞ2
aþui�1;j;k � aþ þ aþ þ a�

2

� �
uijk þ

aþ þ a�

2
uiþ1;j;k

� �

þ 1

ðDyÞ2
7aþ þ a�

8
ui;j�1;k � 2uijk þ ui;jþ1;k

� �� �
þ 1

ðDzÞ2
aþui;j;k�1

	
� 2aþuijk þ aþui;j;kþ1



¼ 7V þ þ V �

8
uijk � kuijk: ð36Þ

• Points on the southern edge at the bottom of the pyramid:

1

ðDxÞ2
7aþ þ a�

8
ui�1;j;k � 2uijk þ uiþ1;j;k

� �� �
þ 1

ðDyÞ2
aþui;j�1;k � aþ þ aþ þ a�

2

� �
uijk

�
þ aþ þ a�

2
ui;jþ1;k

�

þ 1

ðDzÞ2
aþui;j;k�1

	
� 2aþuijk þ aþui;j;kþ1



¼ 7V þ þ V �

8
uijk � kuijk: ð37Þ

• The southwestern corner at the bottom of the pyramid:

1

ðDxÞ2
aþui�1;j;k � aþ þ 7aþ þ a�

8

� �
uijk þ

7aþ þ a�

8
uiþ1;j;k

� �

þ 1

ðDyÞ2
�
aþui;j�1;k � aþ þ 7aþ þ a�

8

� �
uijk þ

7aþ þ a�

8
ui;jþ1;k

�

þ 1

ðDzÞ2
aþui;j;k�1

	
� 2aþuijk þ aþui;j;kþ1



¼ 23V þ þ V �

24
uijk � kuijk: ð38Þ

• The tip of the pyramid:

1

ðDxÞ2
aþui�1;j;k

	
� 2aþuijk þ aþuiþ1;j;k



þ 1

ðDyÞ2
aþui;j�1;k

	
� 2aþuijk þ aþui;jþ1;k



þ 1

ðDzÞ2
a�ui;j;k�1

	
� aþ þ a�ð Þuijk þ aþui;j;kþ1



¼ 5V þ þ V �

6
uijk � kuijk: ð39Þ

Remark.

1. The finite volume discretization (28) or (29) can be applied, in a straightforward manner, to arrays of

QDs using Cartesian coordinates. It also extends easily to 2D or 3D truncated pyramid dots [12]. For ex-
ample, the discretization on the left top corner of a 2D truncated dot (point P in Fig. 4(a)) is given by
P

P

(a) (b)

Fig. 4. Structure schemes of truncated pyramid quantum dots in 2D and 3D.
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� 1

ðDxÞ2
aþui�1;j � aþ þ aþ þ a�

2

� �
ui;j

�
þ aþ þ a�

2
uiþ1;j

�

� 1

ðDyÞ2
a�ui;j�1

�
� ða� þ aþÞui;j þ aþui;jþ1

�
þ 3

8
V �

�
þ 5

8
V þ
�
ui;j ¼ kui;j þOðhÞ:

The discretization on the southwestern corner at the top of a truncated 3D pyramid (point P in Fig. 4(b))

is given by

1

ðDxÞ2
aþui�1;j;k � aþ þ 5aþ þ 3a�

8

� �
uijk

�
þ 5aþ þ 3a�

8
uiþ1;j;k

�

þ 1

ðDyÞ2
aþui;j�1;k � aþ þ 5aþ þ 3a�

8

� �
uijk

�
þ 5aþ þ 3a�

8
ui;jþ1;k

�

þ 1

ðDzÞ2
a�ui;j;k�1

	
� ða� þ aþÞuijk þ aþui;j;kþ1



¼ 17V þ þ 7V �

24
uijk � kuijk:

2. For QDs of general shape, e.g. lens shaped ones, a more sophisticated discretization method is needed.

We have adopted the finite difference method on a body-fitting curvilinear coordinate system developed

in [20]. The test results are quite encouraging and the details will be reported elsewhere.
4. Jacobi–Davidson based algorithm for eigenvalue problems

The finite volume discretization (29) results in various eigenvalue problems. For the constant coefficient

case, a and V are piecewise constants, we have the linear eigenvalue problem

A0F ¼ �kA1F; ð40Þ

where A1 is the identity matrix and A0 is a sparse matrix with non-zero entries located in the main diagonal

and six off-diagonals. Furthermore, since the matrix A0 is symmetric and positive definite, the eigenvalues of

(40) are all positive. In other words, the desired eigenvalues are the ones located in the lower end of the

matrix spectrum.
For the non-parabolic model (4), V ðrÞ is piecewise constant and a is a rational function of the k with

piecewise constant coefficients. At each grid point, the discretization (29) results in a rational function of k.
By multiplying the common denominators of the rational functions

ðkþ g1 � V1Þðkþ g1 � V1 þ d1Þ

and

ðkþ g2 � V2Þðkþ g2 � V2 þ d2Þ

for the grids in the interior and exterior, respectively, Eqs. (30) and (31) become cubic functions of k. For all
interface grid points (32)–(39), we multiply (29) by the common denominator

ðkþ g1 � V1Þðkþ g1 � V1 þ d1Þðkþ g2 � V2Þðkþ g2 � V2 þ d2Þ:

The result is a quintic polynomial of k. With elementary algebraic manipulation, the discretization (29) is

reduced to a quintic polynomial eigenvalue problem:

ðk5A5 þ k4A4 þ k3A3 þ k2A2 þ kA1 þ A0ÞF ¼ 0: ð41Þ
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For this polynomial eigenvalue problem, the target smallest positive eigenvalues are embedded in the

interior of the spectrum of the matrix polynomial (41). This is merely an algebraic artifact as we have

approximated the effective mass using rational functions of the unknown eigenvalues, hence raised the
degree of the polynomial and produced extra roots located on the negative real axis. These negative ei-

genvalues are non-physical and should not be taken as solutions.

To compute the smallest positive eigenvalue for the linear eigenvalue problem (40), variants of

the rational Krylov subspace method [24,34,35] can be used to compute the eigenpairs. Theoretically,

these methods can also be applied to the quintic polynomial (41) written as an enlarged linear eigenvalue

problem

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I
A0 A1 A2 A3 A4

2
66664

3
77775

F

kF
k2F
k3F
k4F

2
66664

3
77775 ¼ k

I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 �A5

2
66664

3
77775

F

kF
k2F
k3F
k4F

2
66664

3
77775: ð42Þ

However, the relevant eigenvalues are the smallest positive ones and they are located in the interior of

the matrix eigenvalue spectrum. To solve them successively by these methods, the classical shift-and-invert

technique is much too expensive for large scale problems. Moreover, the enlarged matrix is five times larger

than the Ai�s. and does not have a good structure as the Ai�s do. The condition number for the enlarged

matrix can be significantly larger than those of the Ai�s since it has a large set of admissible perturbations

[42]. As a consequence, all these approach are not favorable in terms of accuracy and efficiency. To bypass

these difficulties, it is desirable to have numerical methods that deal with the eigenvalue problems (40) and

(41) directly by such as the Jacobi–Davidson methods. It is thus straightforwardly to use the linear Jacobi–
Davidson method [38] for the linear eigenvalue problem (40). However, rare numerical results were

reported for the quintic eigenvalue problem (41), while variants of the Jacobi–Davidson methods are

considered for the generalized linear [37], quadratic [19,39], and cubic [43] eigenvalue problems.

Besides, to compute successively all other desired eigenvalues, deflation or locking schemes are neces-

sary. The implicit deflation techniques based on the Schur forms is known to have good performance for

linear eigenvalue problems [1, Section 4.7 and 8.4]. However, it is not clear how to incorporate the implicit

deflation technique in a quintic polynomial eigenvalue problem since the Schur form is not defined for a

quintic polynomial matrix in general. Alternatively, an explicit deflation scheme is proposed in [43] for
cubic eigenvalue problems. Once the smallest eigenvalue is obtained, the scheme transforms the computed

eigenvalue to infinity and keeps all other eigenvalues unchanged. The second eigenvalue thus becomes the

smallest eigenvalue of the newly transformed eigenvalue problem, which can be solved by the cubic Jacobi–

Davidson method. The technique is then applied repeatedly until all desired eigenvalues are determined. In

addition to the deflation schemes, Meerbergen [30] proposed a quadratic eigensolver using the locking and

restarting scheme based on the Schur form of the linearized problem, which is similar to (41). The method

gives a linkage between the methods for solving the quadratic and the linearized eigenvalue problems.

Here we propose a general polynomial Jacobi–Davidson algorithm, shown in Fig. 6, to compute all the
desired eigenvalues for the problem (9). This algorithm is based on a polynomial Jacobi–Davidson method

modified directly from the quadratic Jacobi–Davidson method illustrated in [2, Section 9.2] and a locking

technique similar to the one mentioned in [30]. This algorithm is capable of calculating the smallest positive

eigenvalue first and then computing successively all other desired eigenvalues by suitably choosing the

orthonormal searching space V ¼ ½VF; Vini�:
• The algorithm computes the smallest positive eigenvalue k1 and the associated eigenvector F1 by the gen-

eral Jacobi–Davidson method first. In this stage, VF is empty, Vini is any matrix satisfying V T
iniVini ¼ I (in

Step (1) of Fig. 6).
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• To compute the second smallest positive eigenvalue k2 (j ¼ 2 in Step (2)), the algorithm normalizes the

approximate eigenvalue F1 and adds it to the initial search space VF. That is, the algorithm computes

VF ¼ F1
kF1k

and chooses an orthonormal matrix Vini such that ½VF; Vini�T½VF; Vini� ¼ I . By doing so, the first

eigenvalue k1 will be included (or ‘‘locked’’) in the eigenpairs computed by

ðV TAðkÞV Þs ¼ 0 ð43Þ

in Step (2.2.i). Therefore, the algorithm chooses the second smallest positive eigenvalue from the ones in

(43).
• The algorithm computes k̂j in a similar way. The algorithm sets VF to be an orthonormal basis of the

eigenspace spanned by F1; . . . ;Fĵ�1 and then choose an orthonormal matrix Vini satisfying

½VF; Vini�T½VF; Vini� ¼ I . The eigenvalues k1 through k̂j�1 will be locked in the eigenpairs computed in Eq.

(43). The algorithm thus chooses the ĵth smallest positive eigenvalue from the ones obtained in (43)

as an approximation of k̂j.
To conclude this algorithm, we note that the correction equation

I � pu�

u�p

�
AðhÞðI � uu�Þt ¼ �r

�
ð44Þ

in Step (2.2.v) is solved approximately by computing

t ¼ �M�1
A rþ eM�1

A p with e ¼ u�M�1
A r

u�M�1
A p

: ð45Þ

The matrix MA is a preconditioner of AðhÞ. For example, in the SSOR preconditioning scheme [40] used in

our numerical experiments,

AðhÞ � MA ¼ ðD� xLÞD�1ðD� xUÞ;

where x is a scalar, AðhÞ ¼ D� L� U with D ¼ diagðAðhÞÞ, L and U are strictly lower and upper triangular

of AðhÞ.

Remark. The polynomial Jacobi–Davidson algorithm outlined in Fig. 6 can be applied to general matrix

polynomial eigenvalue problems. We have implemented and tested it up to s ¼ 5 at very large scale (32

million unknowns) and are quite satisfied with its performance. As analyzed in Section 4.1, the performance

of our scheme is related to the structures of the matrices Ai. The algorithm did not make use of any special
properties related to the degree of the polynomial and we expect it to work as well for higher

degree polynomial eigenvalue problems that arises from discretizing (7) over regular or truncated pyramid

dots.
4.1. Analysis of the quintic polynomial eigenvalue problem

We have found the performance of the algorithm quite satisfactory for both the linear and quintic

polynomial eigenvalue problems. See Section 5 for detail. Here we provide a heuristic explanations of the
rapid convergence of the algorithms based on the structures of the coefficient matrices Ai. Fig. 5 shows the

sparsity patterns of the matrices A0 through A5 with ðL;M ;NÞ ¼ ð8; 8; 6Þ.
For the constant effective mass model (40), it is easy to verify that A0 is symmetric and diagonal

dominant.

For the non-parabolic effective mass approximation (41), the matrices Ai have the following properties:
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Fig. 5. Sparsity patterns of the matrices A0 through A5 are presented in part (a)–(c). In part (d), only the entries involving the interfaces

are plotted. The notation ‘‘nz’’ in the figure stands for the number of non-zero entries in the matrices.
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4.1.1. Symmetry

The matrices Ai, i ¼ 0; 1; 2; 3, are symmetric except the entries involving the grids on the interface. A4 and

A5 are diagonal. See Fig. 5(c).

4.1.2. Diagonal dominance

The matrix A0 is diagonal dominant. The matrices A1, A2, and A3 are almost diagonal dominant except

the rows involving the grids on the interface. These rows of A2 and A3 are indicated in part (d) of Fig. 5. The

matrices A4 and A5 are diagonal dominant since they are diagonal matrices.

4.1.3. Asymptotic structure

• The structures of A0 and A1 mentioned above are independent of h.
• The entries of A2 and A3 are of Oðh2Þ except those associated with the interface grids. For the matrices

A2 and A3, we observe the main diagonal of the matrices are formed by Oðh2Þ entries, except the ones

associated with the interface conditions. The rows associated with these interface grids has non-zero

Oð1Þ entries on the main diagonal and six off-diagonals. The sparsity of A2 and A3 are shown in

Fig. 5(b).

• The entries of the diagonal matrices A4 and A5 are all Oðh2Þ.



Fig. 6. The polynomial Jacobi–Davidson algorithm designed to compute the r smallest positive eigenvalues and the associated

eigenvectors of polynomial eigenvalue problems (9).
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In summary, as h goes to zero, the quintic matrix polynomial can be viewed as a small perturbation of

the generalized linear eigenvalue problem

A0F ¼ �kA1FþOðh2Þ þ B;

with A0 being diagonal dominant and nearly symmetric. Here B is a low rank matrix. The only non-zero

entries are those associated with interface grids.
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It is known [23] that for symmetric generalized linear eigenvalue problems, the more diagonally domi-

nant the matrix is, the less iteration numbers Davidson�s method takes. For the symmetric linear eigenvalue

problem Ax ¼ kx, Morgan and Scott [31] also provided an analysis for local and global convergence of
Davidson�s method based on diagonal preconditioners and the gap ratio of the desired eigenvalue. More

recently, Sleijpen et al. [37] studied convergence of Jacobi–Davidson type methods for generalized eigen-

value problems. Their main concern is the projection that is used to reduce the given eigenvalue problem to

a smaller one. They showed that a proper choice for the projection operator can lead to quadratic con-

vergence.

From our working experience and the related works mentioned above, we believe that the symmetry and

diagonal dominance of the matrices in the matrix polynomial (41) plays an essential roles in the rapid

convergence.
5. Numerical results

In this section, we report several numerical experiments to access the performance of our scheme. We

have used true physical parameters in our simulations. The width of the QD base is 12:4 nm and the height

of the QD is 6:2 nm. This assumption was made to be approximately comparable with the experimental

results reported in [9]. The size of the cuboid matrix is taken to be 24.8 nm� 24.8 nm� 18.6 nm. The cuboid
matrix is partitioned into L, M and N meshes in each direction with Dx ¼ 24:8=L, Dy ¼ 24:8=M and

Dz ¼ 18:6=N . Since we have imposed homogeneous Dirichlet boundary condition, the total number of

unknowns, or the dimension of Ai�s, is therefore ðL� 1Þ � ðM � 1Þ � ðN � 1Þ.
For the constant effective mass model, the effective mass for the QD and the cuboid matrix are 0:024me

and 0:067me, respectively. For the non-parabolic effective mass approximation, we used the following

parameters [27]: P1 ¼ 0:8503, g1 ¼ 0:42, d1 ¼ 0:48, V1 ¼ 0:0, P2 ¼ 0:8878, g2 ¼ 1:52, d2 ¼ 0:34, and V2 ¼ 0:7.
The iteration process within the Jacobi–Davidson subroutine terminates when the residual of the

eigenvalue problem (9) reaches 1:0� 10�10 for the computed eigenpairs.
5.1. Rate of convergence for the finite volume discretization

We first check the convergence behavior of the discretization scheme. As shown in Section 2, the local

truncation error is OðhÞ on the interface grids and Oðh2Þ elsewhere. From standard error estimate, we

expect the global error to be Oðh2Þ and this is indeed verified in our tests.

We choose Dx ¼ Dy ¼ Dz ¼ h for convenience and compute the first three eigenvalues (i.e. k1, k2, and k3)
for various h. As mesh refines, the rate of convergence on eigenvalues is measured by

log2
kð4hÞ � kð2hÞ

kð2hÞ � kðhÞ

 !
;

where kðhÞ is the eigenvalue computed with mesh size h. The result is summarized in Table 1.

Similarly, we measure the rate of convergence on eigenvectors by computing

log2
kFð4hÞ

4h � F
ð2hÞ
4h k2

kFð2hÞ
4h � F

ðhÞ
4h k2

 !
;

where F
ðhÞ
4h is the eigenvector computed with mesh size h and then restricted to the grids with mesh size 4h.

Thus F
ðhÞ
4h , F

ð2hÞ
4h and F

ð2hÞ
4h are all defined on the same grid points. The notation k � k2 stands for the L2 norm of



Table 2

Rate of convergence on the computed eigenvectors over various mesh size

ðL;M ;NÞ Constant effective mass model Non-parabolic effective mass model

F1 Rate F2 Rate F1 Rate F2 Rate

(16,16,12) – – – –

(32,32,24) – – – –

(64,64,48) 1.622 1.679 2.042 2.152

(128,128,96) 1.873 1.884 1.993 2.011

(256,256,192) 1.953 1.937 1.997 2.001

Table 1

Computed eigenvalue results of the finite volume scheme over various mesh size

ðL;M ;NÞ Matrix dimension k1 Rate k2 Rate k3 Rate

Constant effective mass model

(16,16,12) 2475 0.4226 – 0.6527 – 0.6527 –

(32,32,24) 22,103 0.4001 – 0.6423 – 0.6423 –

(64,64,48) 186,543 0.3934 1.744 0.6391 1.708 0.6391 1.708

(128,128,96) 1,532,255 0.3916 1.905 0.6383 1.866 0.6383 1.866

(256,256,192) 12,419,775 0.3911 1.954 0.6380 1.912 0.6380 1.912

Non-parabolic effective mass model

(16,16,12) 2475 0.4314 – 0.6101 – 0.6101 –

(32,32,24) 22,103 0.4204 – 0.6022 – 0.6022 –

(64,64,48) 186,543 0.4173 1.813 0.5999 1.793 0.5999 1.793

(128,128,96) 1,532,255 0.4165 1.948 0.5993 1.938 0.5993 1.938

(256,256,192) 12,419,775 0.4163 1.986 0.5991 1.983 0.5991 1.983
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a vector. The result for the eigenvectors associated with the first two eigenvalues is summarized in Table 2.

The result for the third eigenvector is not shown, since the second and the third eigenvalues are the same

and the associated eigenvectors are thus identical up to a unitary transformation.

To verify the computed eigenvalues in Table 1 are correct, we use the polyeig function in Matlab [41]

to compute the full matrix eigenvalue spectrum of a small problem with non-parabolic effective mass ap-

proximation and ðL;M ;NÞ ¼ ð12; 12; 9Þ. The function polyeig solves the enlarged system (42) and only

works for small size problems. Fig. 7 shows the spectrum, among which are the three desired eigenvalues,
0.4408, 0.6170, and 0.6170. The results are identical with the ones computed by our algorithm up to the 12

digits.

The computed wave function associated with the first two smallest positive eigenvalues are shown in

Fig. 8 with ðL;M ;NÞ ¼ ð32; 32; 24Þ.
5.2. Performance of the algorithm for large scale eigenvalue problems

Here we measure the performance of the algorithm by the number of Jacobi–Davidson iterations taken
in Step (2.2) of the algorithm listed in Fig. 6 for each of the eigenvalue and total CPU time.

We first conduct the numerical simulation on a ordinary desktop equipped with a Pentium IV 1.8 GHz

CPU and 1 gigabyte main memory. The result for ðL;M ;NÞ ¼ ð128; 128; 96Þ or 1,532,255 unknowns is listed
in Table 4. This simulation consumes about 800 megabytes memory.



Fig. 8. Wave functions (eigenvectors) associated with the ground state and the first excited state energies (the first two smallest positive

eigenvalue) for the 3D pyramid QD with ðL;M ;NÞ ¼ ð32; 32; 24Þ.

2 1 0 1 2

λ
1
 = 0.4408

λ
2
 = 0.6170

λ
3
 = 0.6170

Spectrum of the fifth order eigenvalue problem

Eigenvalues

Fig. 7. The matrix eigenvalue spectrum of a quintic polynomial eigenvalue problem with Ai 2 R968�968, i ¼ 0; . . . ; 5 computed by the

function polyeig in Matlab. The desired eigenvalues, k1, k2, and k3, are located in the interior of the spectrum.
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From Tables 1 and 4, we can asses the applicability of our scheme on practical problems. For example, a

cuboid matrix with dimensions 49.6 nm� 49.7 nm� 37.2 nm discretized using ðL;M ;NÞ ¼ ð128; 128; 96Þ
points can be simulated easily on an ordinary PC as mentioned above. A typical pyramid QD is about
12.4 nm�12.4 nm� 6.2 nm in dimension and the cuboid matrix can easily accommodate several QDs



Table 4

Computational results of a eigenvalue problem with 1,532,255 unknowns on an desktop with 1.8 GHz Pentium 4 CPU and 1 gigabyte

of main memory

Constant effective mass model

(linear eigenvalue problem)

Non-parabolic effective mass model

(quintic eigenvalue problem)

Value Item number CPU time (s) Value Item number CPU time (s)

k1 0.3916 72 278.0 0.4165 47 447.4

k2 0.6383 72 284.3 0.5993 45 460.7

k3 0.6383 125 521.4 0.5993 50 544.7

Table 3

Computational results of a eigenvalue problem with size 32,401,863

Constant effective mass model

(linear eigenvalue problem)

Non-parabolic effective mass model

(quintic eigenvalue problem)

Value Item number CPU time (s) Value Item number CPU time (s)

k1 0.3910 138 5852 0.4162 84 4856

k2 0.6380 133 5354 0.5991 74 4835

k3 0.6380 220 8511 0.5991 113 8280

For the first three eigenvalues, the table shows the computed eigenvalues, numbers of iterations, and total CPU time in seconds.
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inside. The grid size corresponds to h ¼ 0:3875, same as the (64,64,48) simulation in Table 1 (a 24.8

nm� 24.8 nm� 12.6 nm cuboid), which resulted relative errors ranging from 0.2% to 0.5%.

To find out the relation between the number of Jacobi–Davidson iteration and the size of the matrices Ai,
we repeat the simulation on a decent workstation with a 1.0 GHz Intel Itanium II CPU and 12 gigabytes of

main memory. The result is given in Table 5 and plotted in Fig. 9. The number of iteration increases very

slowly with respect to the dimension of the matrix (number of unknowns).

We have pushed the problem size up to ðL;M ;NÞ ¼ ð352; 352; 264Þ or 32,401,863 unknowns, which

consumed about 8 gigabytes of main memory. We have not exploited the mirror symmetries of the pyramid

QD, which will further reduce the number of unknowns by a factor of 1=8. In Table 3, we list the computed

eigenvalues, number of Jacobi–Davidson iteration and total CPU time in seconds. It is quite remarkable

that for a polynomial eigenvalue problem with more than 32 millions unknowns, the algorithm took only a
couple of hundreds iterations and several thousands seconds of CPU time.
Table 5

Number of Jacobi–Davidson iteration for the first 3 eigenvalues over various mesh size h

h (nm) Matrix

dimension

Constant model Non-parabolic model

k1 k2 k3 Average k1 k2 k3 Average

1:55� 100 2475 34 38 45 39 36 41 29 35

7:75� 10�1 22,103 46 48 62 52 44 44 27 38

3:88� 10�1 186,543 54 57 84 65 44 43 42 43

1:94� 10�1 1,532,255 72 72 117 87 47 45 57 50

9:69� 10�2 12,419,775 108 106 195 136 66 58 86 70

7:05� 10�2 32,401,863 138 133 220 163 84 74 113 90
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Fig. 9. The average Jacobi–Davidson iteration numbers versus the size of the matrices Ai.
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6. Conclusion

In this article, we propose a 2nd order finite volume scheme to discretize the Schr€odinger equation with

uniform mesh. The discretization leads to large scale linear and non-linear eigenvalue problems. The rel-

evant eigenvalues, which are embedded in the interior of the matrix eigenvalue spectrum, are then solved
successively using a Jacobi–Davidson based method. Numerical evidence shows that the overall scheme is

stable and extremely efficient. The number of iterations grows very slowly with the matrix size. We have

tested the quintic polynomial eigenvalue problems with up to 32 millions variables and the eigenvalues

converge within a little over one hundred iterations. We have also analyzed the structures of the matrices

and attribute the superior performance to the symmetry and diagonal dominance of the matrices.
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Appendix A. Finite difference interpretation of the discretization

Here we re-derive the finite volume scheme (28) as a finite difference scheme that incorporates the jump

condition automatically without enforcing them explicitly.
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Consider a grid point on the left hypotenuse of the 2D triangle domain (Fig. 2(d)). We have

uiþ1;j � ui;j ¼ ðDxÞu�x þ Dx2

2
u�xx þOðh3Þ ðA:1Þ

and

ui;j�1 � ui;j ¼ �ðDyÞu�y þ Dy2

2
u�yy þOðh3Þ; ðA:2Þ

respectively. Here the sign in the superscript refers to the one sided limit from the interior ()) and exterior

of the interface rather than the direction of the coordinate axis.

From (A.1) and (A.2), we have

a�

DxDy
Dy
Dx

ðuiþ1;j

�
� ui;jÞ þ

Dx
Dy

ðui;j�1 � ui;jÞ

¼ a�

DxDy

�
ðDyÞu�x :� ðDxÞu�y þ DxDy

2
ðu�xx þ u�yyÞ


þOðhÞ:

ðA:3Þ

The first two terms on the right hand side can be further reduced to

ðDyÞu�x � ðDxÞu�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p ðDy;�DxÞ � r�uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
 !

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDyÞ2

q
u�n ; ðA:4Þ

where u�n denotes the interior limit of the normal derivative. Similarly,

ui�1;j � ui;j ¼ �ðDxÞuþx þ Dx2

2
uþxx þOðDx3Þ; ðA:5Þ
ui;jþ1 � ui;j ¼ ðDyÞuþy þ Dy2

2
uþyy þOðDy2Þ ðA:6Þ

and we have

aþ

DxDy
Dy
Dx

ðui�1;j

�
� ui;jÞ þ

Dx
Dy

ðui;jþ1 � ui;jÞ


¼ aþ

DxDy

�
� ðDyÞuþx þ ðDxÞuþy þ DxDy

2
ðuþxx þ uþyyÞ


þOðDxÞ

¼ aþ

DxDy

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDyÞ2

q
uþn þ DxDy

2
ðuþxx þ uþyyÞ

�
þOðDxÞ: ðA:7Þ

From Eqs. (A.3) and (A.7), we conclude that

� 1

Dx2
a�uiþ1;j

�
� ða� þ aþÞui;j þ aþui�1;j


� 1

Dy2
a�ui;j�1

�
� ða� þ aþÞui;j þ aþui;jþ1



¼ � 1

2
a�ðu�xx þ u�yyÞ �

1

2
aþðuþxx þ uþyyÞ þOðhÞ; ðA:8Þ

where we have used the interface condition (13). After substituting the Schr€odinger equation (1) into the

right hand side of (A.8), we have re-derived the finite volume discretization (19)
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� 1

Dx2
a�uiþ1;j

�
� ða� þ aþÞui;j þ aþui�1;j


� 1

Dy2
a�ui;j�1

�
� ða� þ aþÞui;j þ aþui;jþ1


R

¼ � 1

2
ðV � þ V þÞui;j þ kui;j þOðhÞ: ðA:9Þ

The finite difference interpretation on other interface points can be derived similarly, we omit the details.

Remark. The local Taylor expansions (A.1), (A.2), (A.5) and (A.6) results in OðhÞ local truncation errors at

the interface grids. If we include higher order derivatives in the local Taylor expansions above, combined

with higher order discretization at interior and exterior grids, it is straightforward to obtain higher order

finite difference schemes with similar matrix structures. This topic is currently under investigation and the

results will be reported elsewhere.
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